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A deformable liquid drop falling through
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The steady axisymmetric flow internal and external to a deformable viscous liquid
drop falling through a quiescent gas under the action of gravity is computed by solving
the nonlinear Navier–Stokes equations using a Galerkin finite-element method with
a boundary-fitted quadrilateral mesh. Considering typical values of the density and
viscosity for common liquids and gases, numerical solutions are first computed for the
liquid-to-gas density ratio ρ = 1000 and viscosity ratio µ from 50 to 1000. Visually
noticeable drop deformation is shown to occur when the Weber number We ∼ 5.
For µ � 100, drops of Reynolds number Re < 200 tend to have a rounded front
and flattened or even dimpled rear, whereas those at Re > 200 a flattened front
and somewhat rounded rear, with that at Re = 200 exhibiting an almost fore–aft
symmetric shape. As an indicator of drop deformation, the axis ratio (defined as
drop width versus height) increases with increasing We and µ, but decreases with
increasing Re. By tracking the solution branches around turning points using an
arclength continuation algorithm, critical values of We for the ‘shape instability’ are
determined typically within the range of 10 to 20, depending on the value of Re
(for Re � 100). The drop shape can change drastically from prolate- to oblate-like
when µ < 80 (for 100 � Re � 500). For example, for µ = 50 a drop at Re � 200
exhibits a prolate shape when We < 10 and an upside-down button mushroom shape
when We > 10. The various solutions computed at ρ = 1000 with the associated
values of drag coefficient and drop shapes are found to be almost invariant at other
values of ρ (e.g. from 500 to 1500) as long as the value of ρ/µ2 is fixed, despite the
fact that the internal circulation intensity changes according to the value of µ. The
computed values of drag coefficient are shown to agree quite well with an empirical
formula for rigid spheres with the radius of the sphere replaced by the radius of the
cross-sectional area.
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1. Introduction
Under the action of gravity, as in a typical earthbound environment, a liquid

drop free from any support surrounded by a quiescent gas will fall at terminal
velocity as a result of the balance between its weight and aerodynamic drag. The
phenomenon of a liquid drop falling through a quiescent gas occurs frequently in both
our everyday life and industrial processes. Yet our understanding of such a basic fluid
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mechanical phenomenon has been quite limited, especially for drops with considerable
deformations when inertial effect in the relative surrounding gas flow becomes
dominant. Ideally, mathematical solutions satisfying the Navier–Stokes equations
(based on Newton’s second law of motion) and continuity equation (from the principle
of conservation of mass) with appropriately specified boundary conditions can provide
all the detailed descriptions of fluid mechanics for fundamental understanding. But
the nonlinearities arising from fluid inertia and unknown shape of deformable free
surface have limited closed-form analytical solutions for a fluid drop moving in
another fluid to only extreme situations, such as inviscid or highly viscous fluids and
with nearly spherical drop shapes (e.g. Taylor & Acrivos 1964; Harper 1972; Brignell
1973).

The advent of modern high-performance computers has enabled the development
of various numerical methods for ‘self-consistently’ solving complicated nonlinear
free-boundary problems such as a fluid drop moving in another fluid. In the
published literature, perhaps the first extensive study of the buoyancy-driven motion
of a deformable fluid drop through a quiescent fluid was performed by Dandy
& Leal (1989) with a finite-difference method using a boundary-fitted orthogonal
curvilinear coordinate grid-generation technique (although a preliminary finite-
element computational work was presented earlier by Tsukada et al. (1984) with
a few solutions for cases of small density ratios). Among a wide range of parameters,
Dandy & Leal (1989) mostly focused on fluid systems of small density ratio (e.g. 0.91)
and viscosity ratio (e.g. 1.33, 2.5, 4), with only very brief illustrations for cases of large
density and viscosity ratios comparable to that of typical liquid drops in gases (e.g. a
common liquid has a density about 103 times and a viscosity of the order of 102 times
of that of a typical gas under normal conditions). The work of Dandy & Leal
(1989) on a liquid drop moving in another fluid was later extended by Helenbrook
& Edwards (2002) with more numerical results using a spectral/hp finite-element
method for density ratios �500 and viscosity ratios �15. Three distinct drop shapes
(namely, prolate, oblate and dimpled) were identified, and conditions for forming these
shapes were determined (cf. Helenbrook & Edwards 2002). Being interested mainly in
transient heat transfer from evaporating droplets, however, Haywood, Renksizbulut
& Raithby (1994a,b) computed deformed droplets at intermediate Reynolds numbers
(from 10 to 100) using a finite-volume type of numerical method, and then Hase
& Weigand (2004) presented transient three-dimensional results at higher Reynolds
numbers (360, 520 and 853) using a volume-of-fluid computational method, but both
of them showed few details on drop shape and flow structure.

In this paper, attention is focused on the fluid mechanics of deformable drops with
large liquid-to-gas density ratio (∼1000) and large liquid-to-gas viscosity ratio (∼100)
moving in another immiscible fluid, as is typical for a liquid drop falling through
a quiescent gas. Numerical solutions are computed using a Galerkin finite-element
method with full Newton iterations for simultaneously solving the steady axisymmetric
Navier–Stokes equations together with the elliptic mesh-generation equations. Because
the free-fluid interface coincides with a finite-element mesh line and the grid nodes
can move according to the interface deformation, the computational method with a
boundary-fitted mesh has been considered to offer the highest accuracy for the present
type of problem (as noted by Tryggvason et al. 2001). Following the description of
mathematical problem and solution method in § 2, the computational results are
presented in § 3 for a variety of drop shapes with associated flow structures and
values of the drag coefficient. Based on the present findings, practical implications of
the computed steady axisymmetric results are discussed in § 4.
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2. Mathematical formulation and solution method
The problem under consideration here is a liquid drop of volume 4πR3/3, constant

density ρl , viscosity µl and surface tension γ , falling through a gas of constant
density ρg and viscosity µg , in a gravitational field with a constant acceleration due
to gravity g. For convenience of analysis, all the variables and parameters are made
dimensionless by measuring length in units of the volume-equivalent drop radius R,
fluid flow velocity v in units of drop terminal velocity U and pressure p in units
of µgU/R. By measuring fluid density in units of ρg and viscosity in units of µg ,
the dimensionless liquid density and viscosity are denoted by ρ (≡ ρl/ρg) and µ

(≡ µl/µg), while those for the surrounding gas become unity. A reference frame
moving with the liquid drop is adopted here with the coordinate origin fixed at the
centre of mass of the drop. Then, the axisymmetric laminar flow inside and outside
the drop is governed by the steady incompressible Navier–Stokes equations

ρ

2
Re v · ∇v = ∇ · Tl with Tl ≡ −pI + µ[∇v + (∇v)T ], ∇ · v = 0, (2.1)

and

1
2
Re v · ∇v = ∇ · Tg with Tg ≡ −pI + ∇v + (∇v)T , ∇ · v = 0, (2.2)

where Re denotes the Reynolds number defined as 2ρgUR/µg , I the identity tensor
and superscript ‘T ’ stands for the transpose. Here p denotes the generalized pressure
(which is also called piezometric pressure) that includes the term for hydrostatic
pressure in the bulk of incompressible fluid, similar to the treatment of Dandy &
Leal (1989). Thus, the gravitational (body) force term does not explicitly appear in
(2.1) and (2.2); the hydrostatic pressure effect due to buoyancy force appears only in
the traction boundary condition at free-fluid interface.

A cylindrical (z, r)-coordinate system is used here with the z-axis coinciding with
the axis of symmetry and pointing in the direction opposite to that of the gravitational
field. Thus, at the drop’s free surface Sf conservation of momentum is satisfied by
imposing the traction boundary condition

n · (Tg − Tl) =
1

Ca

(
dt
ds

+
n
r

dz

ds

)
− pan + Stzn on Sf , (2.3)

where Ca ≡ µgU/γ is the capillary number, the local unit normal vector n at the free
surface points from the gas into liquid and the local unit tangent vector t points in
the direction of increasing s (from the front stagnation point) along the free surface
and relates to n in such a way that n × t = eθ (with the right-handed cylindrical
coordinate system (z, r, θ) being used in this study). The constant excess pressure
inside the drop pa is solved as an unknown to satisfy an overall constraint that the
volume enclosed by the free surface Sf remains constant:∫

Sf

r2 dz

ds
ds =

4

3
, (2.4)

where the Stokes number St ≡ (ρ − 1)ρg g R2/(µgU ), representing the ratio of
buoyancy force and viscous force, is also solved as an unknown to satisfy another
overall constraint that the drop’s centre of mass remains at the coordinate origin:∫

Sf

z r2 dz

ds
ds = 0. (2.5)
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As already mentioned, the hydrostatic pressure effect due to buoyancy force now
appears in the boundary condition (2.3) through St .

Moreover, the flow velocity field must satisfy

n · v = 0 on Sf and r = 0, (2.6)

at the free surface Sf , due to the kinematic condition, and at the axis of symmetry
(r = 0), as required by the symmetry condition. In addition, the stress-free symmetric
condition at the axis of symmetry (r = 0) can be expressed as

ezer : T = 0 at r = 0, (2.7)

where ez and er denote the unit vectors in the z- and r-directions, respectively. (Here
T without the subscript ‘l’ or ‘g’ represents the hydrodynamic stress tensor in both
phases.)

Among several treatments of the far-field boundaries, the simplest way for the
present problem is to consider a cylindrical container wall with large enough radius
(e.g. 10 × R), with its centreline coinciding with the axis of symmetry of the falling
liquid drop. Strictly speaking, the problem considered here is a liquid drop falling
through a gas along the centreline of a cylindrical pipe of radius 10 × R. However, the
pipe-wall effect becomes inconsequential when Re is not small. As demonstrated in
the grid study of Haywood et al. (1994a), the differences in drag coefficient between
far-field boundary located at 10 × R and ∞ become less than 2 % for Re > 10. Thus,
at the cylindrical container wall (r = 10) and the upstream (or ‘inlet’) boundary (e.g.
located at z = −10 in figure 1), the Dirichlet type of condition for uniform flow
velocity is specified as

v = ez on r = 10 and Sinlet . (2.8)

At the downstream (or ‘outflow’) boundary (e.g. located at z = 15 in figure 1), a fully
developed flow condition for hydrodynamic stresses is used, i.e.

ezer : Tg =
∂vz

∂r
and ezez :Tg = 0 on Soutlet . (2.9)

As exemplified by Feng & Scott (1996), Bozzi et al. (1997) and Feng (2007),
among others, solutions to this type of free-boundary problem can be computed
by discretizing the partial differential equation system (2.1)–(2.9) with the Galerkin
method of weighted residuals using finite-element basis functions (cf. Strang & Fix
1973; Kistler & Scriven 1983). In doing so, the problem domain is divided into a
set of quadrilateral elements (cf. figure 1), with biquadratic basis functions being
used for expanding the velocity field and linear discontinuous basis functions for
pressure. The distribution of finite-element mesh points around the deformable free
surface is determined by a pair of elliptic partial differential equations that are
also discretized by the Galerkin finite-element method using subparametric mapping
(cf. de Santos 1991; Christodoulou & Scriven 1992). Then, the set of nonlinear
algebraic equations of Galerkin’s weighted residuals is simultaneously solved by
Newton’s method of iterations (Ortega & Rheinboldt 1970). At each Newton iteration,
the Jacobian matrix of sensitivities of residuals to unknowns is evaluated with the
values of unknowns determined in the previous iteration. The resulting linear algebra
system is then solved by direct factorization of the Jacobian matrix with a modified
version of Hood’s (1976) frontal solver. The iteration is continued until the L2 norm
of the residual vector becomes less than 10−8.



442 J. Q. Feng

10

5

0

−10 −5 0
z

r

5 10 15

Figure 1. Finite-element mesh of the problem domain (as exemplified by the case of ρ = 1000,
µ = 100, Re = 500 and We = 15). The upper panel shows the entire problem domain and the
lower panel the mesh distribution around the drop surface.

With the present mathematical formulation, the Reynolds number Re, capillary
number Ca, (dimensionless) liquid density ρ and (dimensionless) liquid viscosity µ

are the four independent parameters that can be conveniently specified, with St
determined as part of the solution. Once Re, Ca , ρ, µ and St are given, all other
relevant dimensionless parameters associated with a solution can be calculated. For
example, the drag coefficient CD , the Weber number We, the Ohnesorge number Oh ,
the Morton number Mo and the Eötvös number Eo (which is also called the Bond
number) can be evaluated as follows:

CD ≡ 8R g (ρ − 1)/(3 U 2) = 16St/(3Re),

We ≡ 2ρg U 2 R/γ = Re Ca,

Oh ≡ µl/
√

2ρl γ R = µ
√

We/ρ /Re,

Mo ≡ g µ4
g (ρ − 1 )/(ρg γ 3 ) = 3 CD We3/(4Re4 ),

Eo ≡ 4 (ρ − 1 )ρg g R2/γ = 3 CD We/4 = Mo Re4/We2 .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.10)
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Re We CD α 2R (mm) U (m s−1) γ (N m−1)

100 1 1.1349 1.070 0.580 2.58 4.64 × 10−3

0.5 1.1156 1.034 0.577 2.60 9.35 × 10−3

0.1 1.0999 1.007 0.575 2.61 4.70 × 10−2

200 1 0.7961 1.048 0.819 3.66 1.32 × 10−2

0.5 0.7853 1.024 0.815 3.68 2.65 × 10−2

0.1 0.7767 1.005 0.812 3.69 1.33 × 10−1

300 1 0.6456 1.035 1.000 4.50 2.43 × 10−2

0.5 0.6391 1.018 0.997 4.51 4.87 × 10−2

0.1 0.6339 1.004 0.994 4.53 2.45 × 10−1

Table 1. Values of given Re and We with computed CD , α, 2R and U for a drop of ρ = 1000
and µ = 100 in a gas (e.g. air) of ρg = 1.2 kg m−3, µg = 1.8 × 10−5 N s m−2, with the

gravitational acceleration g = 9.8 m s−2.

By virtue of dynamical similarity (as discussed by Batchelor 1967), each solution to
the non-dimensional governing equations for a set of specified Re, Ca , ρ and µ can
represent numerous seemingly different fluid systems and drop sizes.

3. Computational results
In view of the fact that densities of common liquids (such as water, cooking oil,

ethylene glycol, cresol, etc.) are around 1000 kg m−3, while those of common gases
(e.g. air, oxygen, nitrogen, etc. near the surface of the Earth) are around 1 kg m−3,
cases with ρ set at 1000 may be considered the most representative of a liquid drop
in a gas. (In fact, it is rare to find a liquid with density less than 700 kg m−3, such
as that of gasoline, and more than 1500 kg m−3, such as that of chloroform.) For
viscosity, typical values for common gases are in the range between 1 × 10−5 and
3 × 10−5 N s m−2, whereas that for water is 1 × 10−3 N s m−2 which is at the low end
for liquids. Hence, the most representative value of µ for a liquid drop in a gas might
be ∼100 (although µ = 50 might be a closer approximation for a water drop in air).

Because successful solution of nonlinear equations by Newton iterations relies on
sufficiently accurate initial estimates of the solution, it is often convenient to start
by computing cases at small We and Re for nearly spherical drops. For example,
with the present computational code (which is called the finite-element computational
analysis widget (FECAW) accessible from http://sites.google.com/site/jamesqfeng/),
a solution for ρ = 1000 and µ = 100 at We = 0.01 and Re = 1 can be obtained easily
from scratch (e.g. v = 0 and p = 0) in a few Newton iterations. Once a solution for
a given set of parameters is obtained, it can be used as an effective initial estimate
for another nearby solution corresponding to one or more parameters being varied
slightly in the parameter space. Thus, solutions for almost any set of parameters, if
they exist, can be computed by varying the parameters in small steps from a ‘first’
solution. Such a simple scheme for tracking a family of solutions is sometimes called
zeroth-order continuation.

Table 1 provides a list of results at small values of We for nearly spherical drops
with ρ = 1000 and µ = 100 for Re = 100, 200 and 300. With the solution for specified
values of Re and Ca (or We), the drag coefficient CD can be determined from the
computed value of St according to (2.10). From the nodal coordinates along the drop



444 J. Q. Feng

surface, the axis ratio

α ≡ 2rmax

zmax − zmin

(3.1)

can be calculated readily, where rmax is the radius of the drop cross-section (i.e. 2rmax

represents the maximum transverse dimension), and zmin, zmax denote minimum and
maximum z-coordinate values on the drop surface. If the values of ρg , µg and g are
also specified, dimensional diameter 2R and terminal velocity U of the drop can then
be determined from

2R =
{
4µ2

g Re St/[g ρ2
g (ρ − 1)]

}1/3
=

{
3µ2

g Re2 CD/[4 g ρ2
g (ρ − 1)]

}1/3
,

U = [g µg (ρ − 1) Re2/(4 ρg St)]1/3 = [4 g µg (ρ − 1) Re/(3 ρg CD)]1/3.

⎫⎬
⎭ (3.2)

With the known value of U determined from (3.2), the corresponding value of surface
tension γ can be obtained from

γ =
µg U

Ca
. (3.3)

Considering the fact that water has a surface tension ∼0.07 N m−1 and many
liquids have surface tension less than that of water but usually >0.01 N m−1, a liquid
drop of 2R ∼ 1 mm falling through a gas under normal conditions near the surface of
the Earth is expected to have Re ∼ 300 and We between 0.3 and 1. This suggests that
a liquid drop falling through a gas with Re < 100 can rarely have We exceeding unity,
with noticeable drop deformations (cf. table 1). Therefore, cases with Re <100 are not
to be emphasized here for their deformations are not expected to be representative
of liquid drops falling through gases (whereas cases for smaller ρ and µ relevant to
a deformable liquid drop moving through another liquid or in a high-temperature,
high-pressure gas have been mostly covered by Dandy & Leal (1989) and Helenbrook
& Edwards (2002), among others).

At Re = 100 and We = 0.1 with ρ = µ = 1000, the drop is expected to behave
just like a rigid sphere because the axis ratio α = 1.0089 and the maximum internal
circulation velocity vic = 2.467 × 10−3. The drag coefficient computed here for this
case is CD = 1.1081, which is in very good agreement with 1.10 computed for a rigid
sphere by LeClair et al. (1972) and 1.091 by Helenbrook & Edwards (2002) with their
finest mesh. For 20 � Re � 260, a correlation formula of CD for rigid spheres moving
in a fluid was recommended by Clift, Grace & Weber (1978) based on numerous
experimental data as

CD =
24

Re
(1 + 0.1935 Re0.6305), (3.4)

which predicts CD = 1.087, 0.7756 and 0.6444 for Re = 100, 200 and 300. The
values of CD computed here at We = 0.1 and ρ = µ = 1000 for Re = 200 and
300 are 0.7848 and 0.6424, respectively, all within ±2 % of that predicted by (3.4).
Interestingly, extending (3.4) to Re = 400 and 500 yields CD = 0.5675 and 0.5153,
still agreeing quite well with 0.5559 and 0.4917, as computed here at We = 0.1
for ρ = µ = 1000 (within 5 %). Thus, (3.4) can be useful for calculating the drag
coefficient for steady axisymmetric motion of a rigid sphere (or a fluid drop with
large values of ρ and µ but small We) in a fluid at least up to Re = 500, although a
strictly steady axisymmetric drop at Re > 200 may not be realizable in a laboratory
because of the onset of wake instability and vortex shedding (Clift et al. 1978).

Also as a comparison, the computed CD becomes 1.0999 with vic = 2.404×10−2 and
α = 1.0068 if µ is reduced to 100 at Re = 100 and We = 0.1 with ρ = 1000. Actually,
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the comparison between (3.4) and all the values of CD shown in table 1 seems to be
quite reasonable. Thus, a liquid drop falling through a gas under normal condition
near the surface of the Earth at Re � 300 behaves practically the same as a rigid
sphere. This is because of the typically large values of µ for liquid drops in gases that
prevent the internal circulation inside the drop to become too intensive to significantly
influence the drag force. This is also consistent with the general comment of Clift
et al. (1978) that the drag coefficient for a liquid drop (usually of diameter less than
1 mm) differs little from that for a rigid sphere falling in a gas unless the drop-shape
deformation becomes considerable (e.g. for drops with extremely low surface tension).
However, the fluid mechanics problem of a liquid drop falling through a quiescent
gas under the action of gravity can also be considered as a canonical problem for
industrial and agricultural sprays, where the drop size is much smaller than the gas
flow scales and the drop deformation, and internal circulation responses are faster
than its velocity decay rate (which is usually satisfied when µ is large, according to the
estimates of Helenbrook & Edwards 2002). In typical spray applications, the relative
velocity of a drop with respect to the gas can be momentarily much larger than its
terminal velocity in a gravitational field, and surface tension may be substantially
reduced when temperature is high as in the situation of injected fuel droplets in
a combustion chamber. Even a 100 µm fuel droplet may move at Re ∼ 100 in
a combustion chamber with We ∼ 2 (Haywood et al. 1994b). Therefore, computing
cases with We much larger than that considered in table 1 can also provide valuable
knowledge relevant to understanding drop behaviour in spray and other applications.

Most results presented in this study are computed using the mesh shown in figure 1,
with 1053 quadrilateral elements corresponding to 4359 nodes. A coarser mesh with
594 elements (corresponding to 2489 nodes) is sometimes used for checking the
sensitivity of the results to mesh refinement. At Re = 0 and Ca = 0.01, the computed
St is 5.6678 (or 5.6688 with the coarser mesh), which is in good agreement with 5.6612,
as predicted by Haberman & Sayre (1958) for a spherical drop moving in a cylindrical
tube of radius 10 times the drop radius for µ = 100. Hence, a basic validation of the
present domain size and meshing is obtained for the desired accuracy of the computed
results. Among limited results published in the literature for deformable drops moving
in gases at non-zero Re, Dandy & Leal (1989) presented a few computed values of
CD , e.g. CD = 1.61 at Re = 60 and We = 4 for ρ = 1000 and µ = 100, and CD = 1.29
at Re = 100 and We = 4 for ρ = 1000 and µ = 200. These data provide an important
reference. As a comparison, the corresponding values of CD computed here are 1.6700
(or 1.6709 with the coarser mesh) at Re = 60 and We = 4 for ρ = 1000 and µ = 100,
and 1.3269 (or 1.3278 with the coarser mesh) at Re = 100 and We = 4 for ρ = 1000
and µ = 200. As was also shown by Helenbrook & Edwards (2002), the values of CD

computed here are slightly (by a few per cent) higher than that reported by Dandy
& Leal (1989).

In the following, computed solutions for ρ = 1000 and µ = 100, � 200 and 50 are
presented in §§ 3.1, 3.2 and 3.3, respectively. Then, cases with variations of ρ and µ

by ±25 % (or more) from the nominal cases of ρ = 1000 with ρ/µ or ρ/µ2 fixed are
examined in § 3.4, to explore the possibility for extending the results for ρ = 1000 to
cases with other values of ρ.

3.1. Solutions for ρ = 1000 and µ = 100

Because the onset of wake eddy shedding is often observed at Re ∼ 200 for drops
with large µ (cf. Clift et al. 1978), cases where Re = 200 might be considered as
the upper limit of Re for strictly steady axisymmetric drop motion under normal
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Figure 2. Streamlines and drop shapes (from z = −2 to z = 3) for We = 1, 2, 5, 8, 12 and
15 (left to right from top left to bottom right) at Re = 200 (with ρ = 1000 and µ = 100).
The contour values for streamfunctions shown here are 0, ±0.0001, ±0.0002, ±0.0005, ±0.001,
±0.002, ±0.005, ±0.01, ±0.02, ±0.05, ±0.1, etc.

conditions, although the steady axisymmetric solutions for Re > 200 may still be used
to describe many observed falling drop behaviours. Figure 2 shows the streamlines
and drop shapes for We = 1, 2, 5, 8, 12 and 15 at Re = 200, while table 2 provides
the corresponding values of various computed parameters such as the drag coefficient
CD , the Eötvös number Eo, the maximum internal circulation velocity vic (on the
drop surface), the polar angle (measured from the front stagnation point) θic where
the vic is located, the maximum r-coordinate on the drop surface rmax , the minimum
z-coordinate on the drop surface zmin, the maximum z-coordinate on the drop surface
zmax , the axis ratio α (according to (3.1)), the half-width of the wake rwake and the
z-coordinate at the axis of symmetry where the wake ends zwake (as indicated by
vz = 0).

For large values of ρ (e.g. ρ = 1000) and µ (e.g. µ = 100) at Re � 100, drop
deformations are almost visually unnoticeable until We ∼ 5. Significant (oblate) drop
deformations appear at We � 10. Specifically at Re = 200 for ρ = 1000 and µ = 100,
the drop deforms in an almost fore–aft symmetric manner with increasing We up
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We CD Eo vic θic (deg.) rmax zmin zmax α rwake zwake

1 0.7955 0.5966 3.207 × 10−2 67.8 1.016 −0.966 0.972 1.049 1.024 3.942
2 0.8175 1.2262 3.328 × 10−2 68.2 1.032 −0.934 0.945 1.099 1.071 4.069
5 0.8918 3.3441 3.688 × 10−2 73.7 1.081 −0.845 0.869 1.261 1.190 4.486
8 0.9961 5.9764 3.929 × 10−2 78.7 1.145 −0.771 0.790 1.466 1.382 5.054

12 1.1427 10.285 3.775 × 10−2 84.2 1.241 −0.707 0.663 1.812 1.671 5.810
15 1.3274 14.933 3.547 × 10−2 86.7 1.353 −0.609 0.500 2.440 1.980 6.571

Table 2. Values of We, CD , Eo, vic , θic , rmax , zmin, zmax , α, rwake and zwake for Re = 200
(ρ = 1000 and µ = 100).

to We = 15. As shown by Dandy & Leal (1989), the streamlines indicate that the
recirculating wakes are detached from the drop surface for the most part because of
the absence of a substantial secondary interior recirculating vortex inside the drop.
The relative intensity of internal circulation (denoted as vic and measured in units
of terminal velocity U ) increases with We up to ∼8 and then decreases with further
increasing We. The reduction of vic at larger We could be a consequence of the
narrowing space within the severely deformed drop. Not surprisingly, the size (or
volume) of the recirculating wake increases with We, which is consistent with both
mechanisms for vorticity generation: from a curved free surface and from a bluff
body of considerable transverse dimension (cf. Batchelor 1967) which increases with
enhanced oblate drop deformation.

As a reference, the value of Ohnesorge number Oh at We = 15 and Re = 200
for ρ = 1000 and µ = 100 is 0.0612. According to the arguments of Helenbrook
& Edward (2002), based on comparing the velocity decay rate of the drop with its
deformation response rate (as indicated by the results of Miller & Scriven 1968),
drops are expected to respond, in a quasi-steady manner, to their instantaneous
relative velocities with respect to the gas when Oh � 1 and µ � 1. Therefore,
the steady solutions computed here can also be used to describe the quasi-steady
behaviour of drops injected into a gas, as in spray coating, even though the relative
velocity of drops with respect to the gas changes with time.

When discussing experimental results for deformed liquid drops falling in air, Clift
et al. (1978) presented a formula by fitting the measurement data for the axis ratio α as

α =

{
1.0 when Eo � 0.4,

1.0 + 0.18 (Eo − 0.4)0.8 when 0.4 < Eo < 8.
(3.5)

With the values of Eo given in table 2 for We = 1, 2, 5, 8, 12 and 15, (3.5)
yields α = 1.049, 1.155, 1.427, 1.712, 2.125 and 2.530, which seems to consistently
over-estimate the drop deformation when compared with that computed according
to (3.1) in table 2 (for ρ = 1000 and µ = 100). Interestingly, the agreement between
(3.5) and computed α seems to improve somewhat for We = 15 despite the fact that
the corresponding Eo is far beyond 8.

Among several correlation formulas for the drag coefficient of deformable drops,
the most straightforward one seems to come from the intuition that the drag force
may simply be described using the radius of cross-sectional area rmax to modify Re
in (3.4) such that the drag coefficient for a deformable drop becomes

CD =
24 rmax

Re

[
1 + 0.1935 (rmax Re)0.6305

]
, (3.6)
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which is similar to a formula proposed by Helenbrook & Edwards (2002) using α1/3

instead of rmax . Here the effect of internal circulation is ignored because it is generally
weak in a liquid drop falling in a gas with large µ. Substituting the values of rmax

given in table 2 into (3.6) with Re = 200 yields CD = 0.7947, 0.8140, 0.8741, 0.9550,
1.0812 and 1.2343, respectively, for We = 1, 2, 5, 8, 12 and 15, which are quite
comparable to the values of CD presented in table 2.

As is known for drops and bubbles, continuation by increasing We (or reducing the
surface-tension effect) at a given Re would usually reach a turning point (or singular
point as the Jacobian matrix for the Newton iterations becomes singular with rank
deficiency of 1), beyond which steady axisymmetric solutions do not (locally) exist for
a deformable drop or bubble (cf. Feng 2007). This phenomenon is sometimes called
‘shape instability’. Physically, the turning point indicates the incipience of instability
(Iooss & Joseph 1990), suggesting that the deforming stresses at the drop surface,
arising from the flow field, become so strong that surface tension can no longer
hold the drop together. For the case of Re = 200 with ρ = 1000 and µ = 100, the
critical Weber number Wec for the onset of shape instability is found to be 15.602,
with α = 3.341. Using an arclength-continuation algorithm (as in Feng 2000, 2007),
solutions along the branch around turning points can still be computed, even though
those after the branch folds back to reduced values of We are expected to be unstable
even with respect to axisymmetric disturbances. Thus, at a given value of We (below
Wec) there can be two different solutions: one corresponds to the stable drop and the
other to the unstable drop. The unstable drop usually corresponds to the one with
more severe deformation, or in other words, larger axis ratio α. For example, as the
solution folds from Wec = 15.602 back to We = 15.5 (for Re = 200 at ρ = 1000
and µ = 100) the unstable drop has an axis ratio α = 4.071, having disc-like shape
with a thinning centre, indicating the development of dimples at both the front
and rear stagnation points – a precursor of a typical break-up mode (Clift et al.
1978).

Noteworthy here is that a deformable drop in a flow field is susceptible to several
different types of instabilities. As commented by Ryskin & Leal (1984), the shape
instability discussed here should be distinguished from the path instability associated
with non-rectilinear trajectories intrinsically due to unsteady wake flows (for which
a recent summary was provided by Yang & Prosperetti 2007). In principle, the path
instability can occur at relatively low We with very slight free-surface deformation,
whereas shape instability does not have to be induced by an unsteady wake. For
example, a drop in a static electric field without the presence of fluid flow can
also exhibit shape instability when the electric field strength exceeds a critical value
(cf. Taylor 1964).

Figure 3 shows the streamlines and drop shapes for We = 10 at Re = 50, 100,
200, 300, 400 and 500, while table 3 provides the corresponding values of various
computed parameters (as in table 2). For cases of Re < 200, the deformed drops
tend to develop a flattened or even dimpled rear surface while the front surface
remains rounded. Detachment of the recirculating wake becomes obvious with the
drop at Re = 50 having a free-surface profile of the ‘kidney-bean’ shape with
Mo = 2.68 × 10−4. At Re = 200, the drop deformation is nearly fore–aft symmetric.
Then for Re > 200 the front surface becomes increasingly flattened with increasing
Re, while the rear surface stays somewhat rounded. Remarkable here (from table 3)
is that the drop’s axis ratio α decreases with increasing Re. Yet the volume of
the recirculating wake generally increases with Re (for fixed We), consistent with
increased free-surface curvatures at higher Re indicated by sharper free-surface
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Re CD Eo vic θic (deg.) rmax zmin zmax α rwake zwake

50 2.2320 16.740 2.636 × 10−2 87.1 1.264 −0.694 0.500 2.117 1.190 3.107
100 1.5820 11.865 3.310 × 10−2 86.6 1.248 −0.703 0.576 1.952 1.375 4.435
200 1.0735 8.0511 3.884 × 10−2 81.3 1.193 −0.736 0.730 1.628 1.538 5.463
300 0.8524 6.3930 4.074 × 10−2 78.4 1.157 −0.747 0.795 1.501 1.656 5.889
400 0.7180 5.3847 4.077 × 10−2 72.7 1.127 −0.753 0.829 1.425 1.775 5.939
500 0.6228 4.6712 3.994 × 10−2 71.3 1.101 −0.762 0.854 1.363 1.838 5.825

Table 3. Values of Re, CD , Eo, vic , θic , rmax , zmin, zmax , α, rwake and zwake for We = 10
(ρ = 1000 and µ = 100).

Figure 3. Same as figure 2, but for We = 10 at Re = 50, 100, 200, 300, 400 and 500.

bendings on drops at Re = 400, 500 (see figure 3) despite the reduced values of
α. Accompanying these sharp free-surface bendings is the complicated local flow
field in the detached recirculating wake adjacent to the rear surface of the drop.
However, the wake length zwake (but not wake width) seems to decrease slightly
from Re = 400 to 500, apparently consistent with the mechanism for vorticity
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generation from a bluff body of reduced transverse dimension 2rmax . Because of the
shape deformation, the relation of the length of wake behind a deformable drop
and Re seems to exhibit more complicated behaviour than that of a rigid sphere
with both wake length and width always increasing with Re (cf. Fornberg 1988)
due to the slower viscous diffusion of vorticity and stronger convection effect at
higher Re. Similar to that observed by Dandy & Leal (1989), with increasing Re
the internal circulation vortex is gradually shifted towards the front of the drop, as
indicated by θic in table 3.

For cases in table 3 for Re = 50, 100, 200, 300, 400 and 500, (3.5) yields α = 2.683,
2.268, 1.917, 1.754, 1.651 and 1.575, which again seem to over-estimate the axis ratio
compared to that given in table 3. If (3.6) is used with Re and rmax given in table 3,
CD = 2.2100, 1.5151, 1.0174, 0.8085, 0.6834 and 0.5987 are obtained, for Re = 50, 100,
200, 300, 400 and 500 at We = 10, respectively, slightly under-estimating CD by ∼5 %.

As expected, the critical Weber number Wec for ‘shape instability’, as illustrated
for the case of Re = 200, can also be determined by arclength continuation for
other values of Re. Thus, we have Wec = 13.521 with α = 3.312 for Re = 100,
Wec = 15.602 with α = 3.341 for Re = 200, Wec = 17.491 with α = 2.809 for
Re = 300 and Wec = 19.591 with α = 2.778 for Re = 500. A trend seems to emerge
for increasing Wec with Re (for ρ = 1000 and µ = 100).

3.2. Solutions for ρ = 1000 and µ � 200

Intuitively, increasing the viscosity ratio µ should reduce the internal circulation
intensity, which is already quite weak at µ = 100. One might wonder at what value of
µ the internal circulation effect becomes negligible and thereafter further increasing
µ presents no further noticeable changes in the drop behaviour. Figure 4 shows
comparative streamlines and drop shapes with µ = 200 and 1000 for Re = 100,
300 and 500 at We = 10, while table 4 provides the corresponding values of various
computed parameters as in table 2, with additional data provided for µ = 400.
Interestingly, the drop shapes and external flow fields (at given values of Re and We)
for µ = 200 are basically the same as those for µ = 1000 (and also for µ = 400),
except the further reduced internal circulation intensity vic, which is expected to be
weak enough to have an inconsequential effect on the drop deformation and external
gas flow field.

However, a slightly enhanced ‘oblate’ deformation and increased recirculating wake
size with increasing µ can still be observed especially at Re = 300 and 500 (see
table 4, although visually difficult to detect in figure 4). At these larger Re, the
internal circulation vortex is also shifted slightly towards the front of drop with
increasing µ. The length of the wake does not always increase with Re, as illustrated
in table 4 with zwake at Re = 300 being greater than that at Re = 500. But the width
of the wake appears to consistently increase with Re if all other parameters are fixed.
Compared with figure 3, drops in figure 4 at increased µ exhibit smoother surface
profiles, suggesting that the complexity in drop surface profiles at µ = 100 could be
a consequence of the internal circulation effect.

Comparison of the drop shapes at corresponding values of Re between figures 3 and
4 (both at We = 10) demonstrates a trend of increasing drop axis ratio α with more
flattened front surface and decreasing internal recirculation intensity vic as µ increases.
This is consistent with the common understanding that the dynamic pressure forces
external to the drop tend to push the regions near stagnation points inwards (Dandy
& Leal 1989; Helenbrook & Edwards 2002). However, the dynamic pressure forces
from inside the drop due to internal circulation tend to do the opposite, namely to
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Re µ CD Eo vic θic (deg.) rmax zmin zmax α rwake zwake

100 200 1.7941 13.456 1.873 × 10−2 82.6 1.327 −0.582 0.459 2.549 1.553 5.040
400 1.8457 13.842 9.673 × 10−3 81.8 1.344 −0.549 0.445 2.704 1.601 5.183

1000 1.8590 13.943 3.910 × 10−3 81.8 1.348 −0.541 0.443 2.740 1.613 5.220
300 200 0.9540 7.1544 2.568 × 10−2 75.8 1.229 −0.625 0.664 1.907 1.925 6.318

400 0.9844 7.3819 1.351 × 10−2 74.1 1.248 −0.584 0.626 2.063 2.002 6.457
1000 0.9936 7.4520 5.468 × 10−3 73.2 1.253 −0.571 0.614 2.115 2.012 6.492

500 200 0.6751 5.0634 2.722 × 10−2 71.8 1.169 −0.666 0.739 1.664 2.075 5.897
400 0.6979 5.2345 1.501 × 10−2 70.1 1.190 −0.630 0.704 1.784 2.145 5.939

1000 0.7058 5.2936 6.078 × 10−3 68.8 1.196 −0.616 0.692 1.829 2.173 5.950

Table 4. Values of Re, µ, CD , Eo, vic , θic , rmax , zmin, zmax , α, rwake and zwake for We = 10
(ρ = 1000).

(a) (b)

Figure 4. Same as figure 2, but for We = 10 at Re = 100 (top row), 300 (middle row) and
500 (bottom row), each having µ = 200 in (a) and 1000 in (b) (with ρ = 1000).
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We CD Eo vic θic (deg.) rmax zmin zmax α rwake zwake

5 1.1120 4.1701 4.565 × 10−2 71.5 1.015 −0.964 0.951 1.060 0.834 2.759
10 1.1289 8.4666 4.734 × 10−2 72.9 1.022 −0.940 0.918 1.100 0.853 2.815

100 1.1631 87.234 4.875 × 10−2 76.9 1.047 −0.912 0.789 1.231 0.900 2.943

Table 5. Values of We, CD , Eo, vic , θic , rmax , zmin, zmax , α, rwake and zwake for Re = 100
(ρ = 1000 and µ = 50).

Figure 5. Streamlines and drop shapes (from z = −2 to z = 2) for We = 5 (left),
10 (middle) and 100 (right) at Re = 100 (with ρ = 1000 and µ = 50).

push regions near stagnation points outwards (Helenbrook & Edwards 2002). For
µ = 200 at Re = 300, the critical Weber number Wec for the onset of ‘shape instability’
becomes 16.297, lowered from that for µ = 100, with α = 4.294 for a disc-shaped
drop with a thinning centre from the shallow dimple on the front surface. This is
expected because of more enhanced drop deformations being observed at larger µ.

For cases in table 4 at Re = 100, 300 and 500 with µ = 200, (3.5) yields α = 2.406,
1.830 and 1.617, whereas those given in table 4 are 2.549, 1.907 and 1.664. In
contrast to the drops of µ = 100, (3.5) now seems to slightly under-estimate the axis
ratio. Increasing µ beyond 200 tends only to deteriorate such an under-estimation
of (3.5). This suggests that the experimental measurements of axis ratios used for
fitting (3.5) must have been with drops of either µ ∼ 200 or in the presence of
surface contaminants that reduce the internal circulation intensity vic to the level
around 0.02–0.03 (with ρ ∼ 1000). (It is usually difficult to eliminate surface-active
contaminants in systems of practical importance; most of the experimental results
in the literature are for ‘grossly contaminated’ drops, according to Clift et al. 1978.)
When vic > 0.03, as for cases with µ ∼ 100, (3.5) tends to over-estimate the axis ratio;
on the other hand, it under-estimates α when vic < 0.02, as for cases with µ > 200.

Substituting the values of rmax and Re for the corresponding cases in table 4 into
(3.6) yields CD = 1.6620, 1.6942, 1.7018, 0.8883, 0.9098, 0.9155, 0.6589, 0.6777 and
0.6831, within 10 % of the computed CD in table 4 even for rmax > 1.3. Therefore,
(3.6) can become a practically useful approximating formula for a liquid drop moving
in a gas, considering its simplicity and reasonable accuracy.

3.3. Solutions for ρ = 1000 and µ = 50

To examine the intensified internal circulation effect, cases with µ = 50 (which are
relevant to low-viscosity liquid drops in gases such as water drops in air) are computed
here. Figure 5 shows the streamlines and drop shapes for We = 5, 10 and 100 at
Re = 100 and µ = 50, while table 5 provides the corresponding values of various
computed parameters as in table 2. In contrast to cases with µ � 100, drops of µ = 50
at Re = 100 appear reluctant to deform into an oblate shape; even at We = 100 the
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We CD Eo vic θic (deg.) rmax zmin zmax α rwake zwake

5 0.7163 2.6862 4.988 × 10−2 69.2 0.948 −1.030 1.054 0.9098 0.853 3.388
10 0.7778 5.8337 5.447 × 10−2 74.7 1.003 −0.944 0.996 1.034 0.957 3.706

100 0.8614 64.605 5.824 × 10−2 76.6 1.067 −0.846 0.801 1.296 1.100 4.256

Table 6. As in table 5 but for Re = 200.

Figure 6. Same as figure 5 but at Re = 200.

drop deformation is still rather moderate compared to that of µ � 100 at We = 10.
If We is increased further, the dimple shown at the rear of the drop (for We = 100)
would grow deeper into the drop. Eventually at We = 333, a cusp-like profile is
formed at the rear central stagnation point. This kind of drop shape appears very
similar to that of a dimpled shape shown by Helenbrook & Edwards (2002) for
ρ = 50 and µ = 15 at Re = 5 and We = 5.5. Yet the computed CD (= 1.1558) and α

(= 1.208) for the drop at We = 333 are not much different from those at We = 100
(i.e. 1.1631 and 1.231).

Because (3.5) is known to be reasonable only for cases with ρ = 1000 and µ ∼ 200,
it is not surprising to see its inaccurate predictions for cases with ρ = 1000 and
µ = 50. For example, (3.5) would yield α = 1.52 for Eo = 4.17 at Re = 100 and
We = 5 whereas the value based on (3.1) is 1.06. In contrast, (3.6) has no difficulty
in providing accurate estimates of CD for the cases in table 5 as 1.1114, 1.1229 and
1.1642.

If Re is increased to 200, a drop of µ = 50 deforms into a prolate shape (with
α = 0.910) at We = 5, and then its axis ratio α comes back to 1.034 at We = 10
with a shape quite different from that of a near spherical one (see figure 6) having a
protruding rim in the front half of the drop. At We = 100, the drop in figure 6 shows
a profile similar to the button mushroom (actually an ‘upside-down’ one if considering
that the drop is falling from right to left in the plots). Prolate deformations of liquid
drops falling in gases (with ρ � 500 and µ � 15) were computed by Helenbrook &
Edwards (2002), who suggested the tendency of internal circulation inside the drop
to cause prolate drop deformations. For this reason, the prolate drop deformation
is expected at smaller µ as is observed here at µ = 50. However, the trend of
disappearing prolate deformation with increasing We (for a drop of µ = 50) is
somewhat puzzling. In general, prolate drops are expected to be axisymmetrically
unstable in view of the fact that falling solid ellipsoids tend to align with the long
axis normal to the flow (Clift et al. 1978). Helenbrook & Edwards (2002) suspected
that prolate drops would rather tumble in a three-dimensional fashion wobbling or
oscillating while falling through a gas, to explain why prolate falling drops have never
been reported in experimental observations.

Again, substituting the values of rmax at Re = 200 in table 6 into (3.6) yields values
of CD as 0.7147, 0.7792 and 0.8556, respectively, for We = 5, 10 and 100, which are
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We CD Eo vic θic (deg.) rmax zmin zmax α rwake zwake

5 0.5538 2.0766 5.101 × 10−2 63.4 0.907 −1.073 1.116 0.8287 0.843 3.690
10 0.6881 5.1607 5.424 × 10−2 69.3 1.032 −0.906 0.975 1.097 1.176 4.737

100 0.7633 57.246 6.003 × 10−2 77.8 1.104 −0.763 0.775 1.434 1.404 5.308

Table 7. As in table 5 but for Re = 300.

Figure 7. Same as figure 5 but at Re = 300.

in good agreement with those in table 6 for both prolate and upside-down button-
mushroom-shaped drops. To account for the internal circulation effect, Helenbrook &
Edwards (2002) proposed a multiplication factor, (1−0.03 Re0.65/µ)(2+3 µ)/(3+3 µ),
which equals 0.9748 (or 0.9596) for µ = 50 and Re = 200 (or 500), indicating a
negligible drag-reduction effect of the internal circulation in all the cases presented
here. Physically speaking, internal circulation tends to reduce drag force on the drop.
Yet for most cases examined here, (3.6) appears to slightly under-estimate the value
of CD . Thus, multiplying (3.6) with the ‘internal-circulation-correction’ factor is not
expected to offer any improvement in terms of prediction accuracy.

Figure 7, along with table 7 (as in figure 5 and table 5 but for Re = 300), shows that
the drop behaviour observed at Re = 200 is qualitatively retained at higher Re. Both
the prolate and oblate-like deformations at a given value of We seem to be enhanced
with increasing Re (for Re � 200). Noteworthy here is that beyond We = 100 the
drop shape changes very little. For example, even at We = 500 the computed axis
ratio is α = 1.576 with CD = 0.7884, which is still quite comparable to that at
We = 100 (i.e. 1.436 and 0.7633). Unlike the cases for ρ = 1000 and µ � 100 where
drops typically become unstable at a critical Weber number Wec < 20, solutions for
drops with ρ = 1000 and µ = 50 at Re = 300 seem to exist for very large values of
We without a sign of encountering the turning point. The same situation can also be
observed for Re = 200, 400, 500, etc.

According to the findings of Helenbrook & Edwards (2002), increasing ρ and/or
decreasing µ tend to result in more pronounced prolate deformations. If µ is reduced
to 40, the drops at Re = 100 indeed no longer deform into a shape with α > 1
(e.g. oblate) for We < 10. But complicated shapes with α > 1, such as the button
mushroom shapes in figures 6 and 7, appear persistently at large values of We even at
µ = 20. On the other hand, if µ is increased to 70, no prolate drops can be obtained
anymore for Re � 300. But drops at Re = 500 may still have α < 1 for We ∼ 5 until
µ > 80. Thus, cases with µ < 80, especially when µ ∼ 50 (for ρ = 1000), present
unique opportunities for steady axisymmetric liquid drops to exhibit drop shapes with
both α < 1 (such as prolate) and α > 1 (such as oblate), and also to survive large-We
conditions (at least for Re � 100), provided that the drop surfaces are free from
surface-active contaminants. However, oblate shapes are often observed for a liquid
drop moving in a gas probably because either the value of µ is large (e.g. >100)
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(a) (b)

Figure 8. Same as figure 2 but for We =10 at Re = 200 (top row) and 400 (bottom row),
each having (ρ,µ) = (750, 75) in (a) with α = 1.474 and 1.348, CD = 1.0071 and 0.6989, and
(1250, 125) in (b) with α = 1.736 and 1.486, CD = 1.1149 and 0.7327 (for fixed ρ/µ = 10).

or the presence of surface-active contaminants tends to enhance the liquid viscosity
effect (Haywood et al. 1994a; Helenbrook & Edwards 2002). For water drops in
air, the experimentally observed internal circulation intensity seems to be somewhat
less than that predicted by numerical steady solutions, which Pruppacher & Klett
(1997) attributed to drop oscillations that tend to disrupt the internal circulation. The
time-dependent, disruptive internal circulations in water drops (of diameter >1 mm)
suspended in air were also reported in a recent wind-tunnel study of Szakáll, Diehl &
Mitra (2009). Therefore, the shape of large water drops with observable deformations
in air often appears to be oblate due to the expected reduction of overall internal
circulation effect by the disruptive transient nature of the flow field even with µ ∼ 50.

3.4. Solutions for ρ/µ or ρ/µ2 fixed at specified values

Multiplying Re by ρ/µ yields the Reynolds number value for the liquid flow inside
the drop. Thus, it might be expected that with the value of ρ/µ fixed, the solutions
would be virtually invariant. Figure 8 shows the streamlines and drop shapes at
ρ/µ = 10 (i.e. ρ = 750 and µ = 75, ρ = 1250 and µ = 125, the same as ρ = 1000
and µ = 100) for Re = 200 and 400 with We = 10, and figure 9 those at ρ/µ = 5
(i.e. ρ = 750 and µ = 150, ρ = 1250 and µ = 250, same as ρ = 1000 and µ = 200).

Indeed, there is very little qualitative change in the drop shape and flow structure
for a ±25 % variation of ρ and µ from ρ = 1000, with ρ/µ fixed at a specified value,
except the internal circulation intensity which is mostly determined by the value of
µ. For example, the value of CD varies within ±7 % from that with ρ = 1000 and
µ = 100, and α within ±10 % for cases of ρ/µ = 10 in figure 8, with the drop at
Re = 400 varying less than that at Re = 200. For cases of ρ/µ = 5 in figure 9, CD

varies within ±2 % and α within ±4 %. But the value of vic varies about ±20 %,
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(a) (b)

Figure 9. Same as figure 8 but having (ρ,µ) = (750, 150) in (a) with α = 2.082 and 1.718,
CD = 1.2157 and 0.7780, and (1250, 250) in (b) with α = 2.187 and 1.790, CD = 1.2411 and
0.7925 (for fixed ρ/µ = 5).

corresponding to the ±25 % variation of µ. As expected, with reducing internal
circulation intensity for increasing µ, CD would vary less than ±0.5 % and α within
±1 % for ρ/µ = 2.5 (i.e. ρ = 750 and µ = 300, ρ = 1250 and µ = 500, the same as
ρ = 1000 and µ = 400).

The reason for slight variations even with the value of ρ/µ fixed is that the free-
surface flows are not solely determined by Re and ρ Re/µ. Although at a fixed value
of ρ/µ the values of Reynolds number for both the gas external to and the liquid
internal to the drop are fixed, the value of the Weber number We inside the drop can
still vary with a change of ρ (almost regardless of the value of µ), and the intensity
of internal circulation can vary with a change of µ (almost regardless of the value
of ρ). Dandy & Leal (1989) showed that for Re = 100 and We = 4 with ρ ∼ 1 and
ρ/µ = 0.25 (as well as with other examples) ‘neither the internal Reynolds number
nor the density ratio plays an important role in determining the flow field’. The value
of µ, which determines the intensity of internal circulation, appeared to influence the
drop behaviour much more significantly than ρ.

Actually, if the value of ρ/µ2 is fixed instead of ρ/µ, i.e. the Ohnesorge number
Oh (as defined in (2.10)) is fixed instead of ρ Re/µ, variations in CD and α as ρ

changes from 750 to 1250 become almost negligible. For example, with ρ/µ2 fixed at
0.1 (i.e. ρ = 750 and µ = 86.6025, ρ = 1250 and µ = 111.8034) at We = 10, both
CD and α vary within ±0.5 % from that with ρ = 1000 and µ = 100 for the present
results computed at Re = 200 (Oh = 0.050) and 400 (Oh = 0.025). Even at ρ = 500,
µ = 70.7107 and ρ = 1500, µ = 122.4745 (i.e. ρ/µ2 = 0.1), the computed values of
CD and α are still within ±2 % from that for ρ = 1000 and µ = 100. Hence, the best
choice for preserving the basic features in deforming drops while varying ρ and µ

is to keep ρ/µ2 (i.e. Oh) at a fixed value. In other words, Oh is the parameter that
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(a) (b)

Figure 10. Same as figure 8 but for Re = 200 at We = 5 and 100, each having
(ρ,µ) = (750, 43.3013) in (a) with α = 0.912 and 1.291, CD = 0.7151 and 0.8588, and
(1250, 55.9017) in (b) with α = 0.909 and 1.297, CD = 0.7171 and 0.8632 (for fixed ρ/µ2 = 0.4).

actually controls the basic features of deforming drops at given values of Re and We.
However, for ρ/µ2 � 0.025 or ρ/µ � 5 the difference between fixing ρ/µ2 and fixing
ρ/µ becomes almost negligible for the result is insensitive to the (±25 %) change of
already large enough µ (as seen in figure 4 and table 4).

The cases at ρ/µ2 = 0.4 (i.e. ρ = 750 and µ = 43.3013, ρ = 1250 and µ = 55.9017,
the same as ρ = 1000 and µ = 50) are shown in figure 10 for relatively small µ

with more intensified internal circulations. Except for a reduced internal circulation
intensity for the drop of ρ = 1250 and µ = 55.9017, all the other basic features
such as the drop shape and external flow field appear very close to those of ρ = 750
and µ = 43.3013 at both We = 5 and 100 (for Re = 200). Thus, the values of CD

and α do not vary more than 1 % for given values of Re and We with ρ/µ2 fixed
at 0.4 while varying ρ and µ by ±25 %. More intensified internal circulation (with
vic = 6.717 × 10−2) can clearly be observed in the drop of ρ = 750 and µ = 43.3013
at We = 100 with a more noticeable secondary eddy than that of ρ = 1250 and
µ = 55.9017 (with vic = 5.213 × 10−2). Yet the external flow fields as well as the drop
shapes are almost identical for ρ = 750 and 1250 at given values of Re and We (as
shown in figure 10 for ρ/µ2 = 0.4).

4. Discussion
Enabled by a Galerkin finite-element method with a boundary-fitted quadrilateral

mesh, solutions are computed for steady axisymmetric flow internal and external to
a deformable liquid drop falling through a quiescent gas. Both the flow field and
free-surface profile can be determined with sufficient accuracy in great detail, for
parameters relevant to the motion of liquid drops in gases. Considering the ranges of
density and viscosity for common liquids and gases, most results are presented around
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Figure 11. Same as figure 2 but for Re = 100, 200, 300 and 500 at corresponding critical
Weber number Wec (= 13.521, 15.602, 17.491 and 19.591, left to right from top left to bottom
right), with ρ = 1000 and µ = 100.

the nominal cases for the liquid-to-gas density ratio ρ = 1000 and liquid-to-gas vis-
cosity ratio µ = 100 at the Reynolds number 100 � Re � 500 and the Weber number
We � 1, where drops are expected to exhibit substantial deformations. Although
solutions for steady axisymmetric drops at Re > 500 can still be computed, they may
not be realizable in the laboratory experiments because of the onset of wake eddy
shedding often observed at Re ∼ 200 (Clift et al. 1978). But the steady axisymmetric
solutions for Re > 200 may still be used to reasonably describe the time-smoothed
behaviour of an oscillating drop with an unsteady wake. For example, LeClair,
Hamielec & Pruppacher (1970) showed that steady axisymmetric solutions could
predict drag on a sphere in close agreement with experimental data up to Re = 400,
even when the flow in the wake is realistically no longer steady and axisymmetric.

For ρ ∼ 1000 and µ ∼ 100, most liquid drops moving at Re < 300 with We < 1
are rather expected to behave like rigid spheres with negligible deformations. Due to
large viscosity ratio µ, the internal circulation inside the drop does not seem to have
much effect on the drag force. The drop deformation becomes visually noticeable
when We ∼ 5 and is enhanced with increasing We at a given value of Re. Drops
of Re < 200 tend to have a rounded front and flattened or even dimpled rear
(referred to as ‘bowl-shaped drop’ by Hsiang & Faeth 1995), and those of Re > 200
a flattened front and somewhat rounded rear (referred to as ‘dome-shaped drop’
by Hsiang & Faeth 1995), with that at Re = 200 exhibiting an almost fore–aft
symmetric shape. As an indicator of drop deformation, the axis ratio α increases with
increasing We and µ, but decreases with increasing Re. The ‘shape instability’ at the
critical Weber number Wec, corresponding to a turning point in the mathematical
parameter space, typically occurs for 10 � We � 20 where drops are severely
deformed, as illustrated in figure 11. This seems to match the findings of Hsiang &
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Faeth (1992, 1995) for the ‘bag break-up’ that typically occurs at 10 � We � 20 for
Oh < 1.

If ρ is fixed at 1000 and µ is varied, the drop shape can change drastically from
α < 1 (such as prolate) to α > 1 (such as oblate) when µ < 80 (with 100 � Re � 500).
For µ = 50, a drop at Re � 200 can exhibit a prolate shape (α < 1) when We < 10
and an upside-down button mushroom shape with α > 1 when We > 10 (as shown in
figures 6 and 7). However, as commented by Helenbrook & Edwards (2002), prolate
drops are expected to be axisymmetrically unstable because a falling object tends to
align with the long axis normal to the flow; this might be the reason why prolate
falling drops have never been reported. For µ � 100 with increasing We, drops at
Re � 100 always deform into more and more oblate-like shapes with α > 1. The
drop shape and external flow structure become rather insensitive to the value of µ for
µ � 200, when the (dimensionless) internal circulation intensity vic – the maximum
internal circulation velocity – is below ∼0.025.

Interestingly, the fitted formula of Clift et al. (1978) for the observed axis ratio of
liquid drops falling in air as a function of the Eötvös number Eo, i.e. (3.5), seems
to describe the axis ratio of computed drops quite well for the case of ρ = 1000
and µ = 200, but not as well at other values of µ. For the drag coefficient CD

though, a straightforward modification of the formula recommended by Clift et al.
(1978) for rigid spheres by replacing the radius of the sphere with the radius of the
cross-sectional area, as in (3.6), is found to be quite accurate when compared with the
computed values of CD for all the cases considered here. If the drop shape is assumed
to be reasonably represented as an ellipsoid with rmax = α1/3 (as in Helenbrook &
Edwards 2002), (3.6) can also be written as

Eo = 18 α1/3 Ca
[
1 + 0.1935 (α1/3 Re)0.6305

]
, (4.1)

which is an implicit equation for α. Indicated by (4.1) is the fact that the value of α

also depends on Ca and Re besides Eo. Therefore, it is not surprising to find that
(3.5) has only limited predictability. Actually using α1/3 to estimate rmax appears to
be quite reasonable for most of the cases computed here. For example, in table 3
at Re = 100, 200 and 500 the corresponding values of α1/3 are 1.176, 1.109 and
1.250, which are quite comparable to 1.193, 1.101 and 1.248, the values of rmax ,
respectively. Even for the drops in table 4 with enhanced deformations at µ = 1000
and Re = 100, the value of α1/3 is 1.399 (versus rmax = 1.348). But for the drops in
figures 6 and 7 with button mushroom shapes being too far from an ellipsoidal shape,
the value of α1/3 can no longer be used to approximate the radius of cross-sectional
area rmax .

The computed results for various Re and We at ρ = 1000 and different values
of µ are shown to be almost identical to the corresponding cases at ρ = 500 and
1500 (except for vic) as long as the value of ρ/µ2 remains fixed. Hence, only three
independent parameters such as Re, We and Oh (or ρ/µ2), instead of four (i.e.
Re, We, ρ and µ), are needed for specifying a mathematical problem to determine
the drop deformation (such as α) and external flow field (such as CD), for liquid
drops moving in gases (with large ρ and µ). However, a specific value of µ is
needed for determining the internal circulation intensity, if it is of particular interest.
Actually the mode of drop deformation (at large values of Re) should be a result
of the difference between the dynamic pressure distributions (arising from the flow
convection) internal and external to the drop. According to an estimate by Helenbrook
& Edwards (2002), the ratio of dynamic pressure magnitudes internal and external to
the drop is expected to be proportional to ρ/µ2. Thus, the mode of drop deformation
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varies most significantly when ρ/µ2 > 0.15 (e.g. ρ ∼ 1000 and µ < 80) for liquid
drops moving in gases. Because the internal circulation in a liquid drop moving in
gas (roughly ∝ U/µ) does not have substantial intensity, its influence on the drag
force may be negligible (when We is small). However, at large values of We the
internal circulation can have quite significant effects on drop deformation, which
tend to alter the drag force for the change of cross-sectional area, as indicated by
(3.6). Thus, the internal circulation effect on drag force must be realized through its
influence on drop deformation rather than reducing the viscous shear stresses along the
drop surface.

It is noteworthy that the shapes of the drops in figure 4 for µ � 200, especially at
Re � 300, look very similar to those of the large water drops shown by Pruppacher
& Beard (1970) through their wind-tunnel experiments. In a general description of
liquid drops in air, Clift et al. (1978) also stated that ‘the shapes of liquid drops
falling through air can be conveniently represented by two oblate semispheroids with
a common major semi-axis a and minor semi-axes b1 and b2’. Yet not all liquid drops
satisfy the viscosity ratio µ � 200. For example, water drops in air typically have
µ ∼ 55 (with ρ ∼ 830, e.g. under standard condition at 20◦C and 1 atm). According
to the present computational results, water drops falling through air should exhibit
prolate shapes unlike those with ρ/µ2 � 0.025 (e.g. ρ ∼ 1000 and µ � 200).

The problem here might come from the assumption of steady axisymmetric flow,
which may only be strictly accurate for Re � 200 (Clift et al. 1978). Significant vortex
shedding effects on water drops, as indicated by a spiral falling trajectory (also known
as the path instability), are typically observed when Re > 300. Beyond Re ∼ 300,
numerical solutions of steady axisymmetric flows could become less relevant to
reality. However, LeClair et al. (1970) showed that steady axisymmetric solutions
could predict drag on a sphere in close agreement with experimental data up to
Re = 400, indicating that they may reasonably describe the time-smoothed behaviour
of the intrinsically transient flow beyond Re = 200. Not surprisingly, Pruppacher &
Klett (1997) suggested a cutoff point of Re ∼ 400 for using the steady axisymmetric
solutions to describe water drops falling in air. But water drops at Re < 400 barely
deform from the spherical shape (as indicated by the computed data in table 1 as well
as the drop images of Pruppacher & Beard (1970)); all noticeably deformed water
drops are at Re > 500 where the flow in the wake becomes time-dependent, which
can also cause the drop to oscillate (Beard, Ochs & Kubesh 1989) or to cant (Saylor
& Jones 2005). The transient vortex shedding and associated drop oscillations tend to
disrupt the internal circulation inside the liquid drop, resulting in an overall reduction
of the internal circulation intensity (Pruppacher & Klett 1997; Szakáll et al. 2009).
A similar effect of reducing the internal circulation intensity can also be obtained
by simply increasing the viscosity ratio µ in a steady axisymmetric model, without
computing the complicated transient, full three-dimensional flow field. Therefore, the
drop shapes shown in figure 4 for Re � 300 and ρ/µ2 � 0.025 appear to represent
the most commonly observed shapes of significantly deformed liquid drops falling
in air.

The author would like to thank Professor K. Beard for bringing the drop
deformation problem to his attention, as well as Dr M. Szakáll and Dr S. Mitra
at the University of Mainz for stimulating discussions in their wind tunnel laboratory.
The constructive comments from reviewers helped enhance the presentation and are
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